

Bilkent University

Department of Computer Engineering

Senior Design Project

Final Report
DeepGame

Students
Mert Alp Taytak

Betül Reyhan Uyanık
Ömer Faruk Geredeli

Supervisor

Dr. Uğur Güdükbay

Jury Members
Prof. Dr. Özgür Ulusoy

Asst. Prof. Dr. Shervin Rahimzadeh Arashloo

Innovation Expert
Cem Çimenbiçer

December 27, 2020
This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents
1 Introduction 2

2 Requirements Details 3
2.1 Goals and Purposes 3
2.2 Use Case Model 4
2.3 Flow of Events 5
2.4 Limitations 6
2.5 Assumptions 6

3 Final Architecture and Design Details 7
3.1 Cloud Side 7

3.1.1 Subsystem Decomposition 7
3.1.2 Data Layer 9
3.1.3 Logic Layer 11
3.1.3 Presentation Layer 12

3.2 Game Side 13

4 Development/Implementation Details 18
4.1 Cloud Side 18

4.1.1 Google Colab 18
4.1.2 Style Transfer 19
4.1.3 Image Animation 20
4.1.4 Mask Generation 21

4.2 Game Side 23

5 Testing Details 31

6 Maintenance Plan and Details 32

7 Other Project Elements 33
7.1 Consideration of Various Factors in Engineering Design 33

7.1.1 Entertainment 33
7.1.2 Socialization 33
7.1.3 Privacy 33

7.1.4 Ownership of One’s Likeness 33
7.2 Ethics and Professional Responsibilities 33
7.3 Judgements and Impacts to Various Contexts 34
7.4 Teamwork Details 35

7.4.1 Contributing and Functioning Effectively on the Team 35
7.4.2 Helping Creating a Collaborative and Inclusive Environment 35
7.4.3 Taking Lead Role and Sharing Leadership on the Team 36
7.4.4 Meeting Objectives 36

7.5 New Knowledge Acquired and Applied 36

8 Conclusion and Future Work 39

9 Glossary 40

APPENDIX A - User Manual 41

10 References 44

1

1 Introduction
Video games are a form of entertainment enjoyed by many people on a multitude of platforms.
In various video game genres the player plays a character, where the character becomes an
extension of themselves. Naturally, this extension may take form as the approximate replica of
the player or a person of player’s choosing. In order to accommodate this, game developers
offer character customization options that have been getting more and more intricate. However,
evolving technology allows us to take this beyond what sliders, preset options and limited
degrees of freedom can achieve.

The particular technology that enables this is the recent development of algorithms
commonly called “deepfake algorithms”. Briefly, deepfake algorithms transfer one person’s
likeness to another person in image or video media.

Deepfake algorithms are a very recent discovery and as a result, their application to
different fields has been largely unexplored. One such field is video games. Our intention in this
project was to apply this technology to video games as a means of character customization.

However, character customization as a means of transferring one’s likeness to a video
game is not a recent innovation. There are previous works that either use a simple approach of
texture mapping a photograph to a game model or using expensive and relatively rare
equipment in 3D depth cameras to construct a detailed model of the person. What DeepGame
brings to this concept is the use of deepfake algorithms combined with other helper machine
learning methods to take a few photographs of a person and their likeness transfer to a game.

In DeepGame, we use a neural style transfer method for changing the art style of a
photograph from photorealistic to one more appropriate for video game art. Then, we put the
product through a deepfake image animation method to generate animations of the styled input
in various poses matching the game’s needs. Finally, we take those animations and splice them
into the game where appropriate.

Our original goal was to develop the technology and provide a software integratable with
any game. However, throughout the development we realized various challenges and limitations
with this goal. A prime example being the requirement of CUDA enabled GPUs in most machine
learning techniques. After the realization of such limitations, we diverted our goals to developing
a proof of concept with machine learning computations offloaded to the cloud.

Rest of this report will feature in-depth discussion of design and development of

DeepGame along with some other related topics such as decision making or group dynamics
and personal growth. One thing to keep in mind while reading this report is that the DeepGame
project is more about developing a proof of concept to novel technique with broad applications
than creating a stand-alone software.

2

2 Requirements Details
In this section we will discuss the final state of the requirements of DeepGame. This discussion
will begin with an informal statement of goals and purposes. Then, we will discuss the
requirements under a more formal manner by providing diagrams and specifications.

2.1 Goals and Purposes
The general idea of DeepGame is to put the user’s visual likeness into a video game. This idea
by itself is relatively simple, methods such as texture wrapping a photograph onto a video game
model would be a basic approach. Our goal was to achieve this idea through the usage of
deepfake algorithms. We also wanted to create a software that could be readily integrated into
any game as a plugin. However, our ambitions were not matched by our abilities as a group.
Therefore, we went for a reduction in our goals.

Final state of our goals is to have a proof of concept software that will take the image of
a person and an appropriate style image to insert the person into a scene rendered by a game
engine. We believe that this proof of concept can be developed into a plugin like we imagine
given enough time and resources.

3

2.2 Use Case Model

Figure 1. Use Case Diagram for DeepGame

As evident from the diagram, DeepGame is split into two main systems. One is in the cloud on
Google Colab, other is a video game that runs on the local machine. Cloud part handles
processing of data and producing deepfakes to be used later in the video game. Various use
cases in the cloud system are the processing steps. Those steps can be executed in order and
get a deepfake to use in the game, or singular parts can be used to produce intermediate
products.

4

2.3 Flow of Events

Figure 2. Cloud Side Activity Diagram

The cloud side is hosted on the Google Colab platform. Because Colab uses Jupyter notebooks
as its foundation, usage of Colab is fairly linear. Moreover, the process of taking inputs to a
deepfake applied video is fairly linear. Only problem is that certain steps require human
semi-supervision for judgement of quality and execution of tasks beyond computer
comprehension. Those are the steps that introduce loops to the activities.

5

Figure 3. Game Side Activity Diagram

The game is for demonstrating DeepGame only. It does not feature any gameplay elements.

2.4 Limitations
The main architectural limitation is that the machine learning part of the project has to be
executed on the cloud. That is because the machine learning ecosystem is based on NVIDIA’s
CUDA enabled GPUs. Therefore, a part of the project has to be on the cloud. Effects of this
could be remedied by implementing a local client that seamlessly connects the cloud server and
the local game. However, this was not done.

Limitations of what is done is that the particular style transfer technique chosen also
transfers the colors between images. This is due to a tradeoff between usability, performance
and quality. Main consequence of this is that a style image must be carefully chosen to not
corrupt the result. A similar limitation is that mask generation step requires human supervision
and intervention to achieve good results, unless image format is heavily restricted to enable a
more hands-off approach.

2.5 Assumptions
Our first assumption is that the user has a computer with internet access and a Google account.
Although it is possible to access the cloud side of the project with other devices, running the
game requires a computer. Another assumption is that the user has a computer capable of
running a barebones game. The final assumption is that the user is knowledgeable enough to
execute tasks requiring human intervention.

6

3 Final Architecture and Design Details
Due to requirements of specific hardware and limitation of our access to such hardware, we split
the project into two parts. There is a cloud side responsible for processing the user data and
transforming it into a format ready to be used by the video games at the user side. In this
section, we will discuss the two sides separately.

3.1 Cloud Side

3.1.1 Subsystem Decomposition

Figure 4. Cloud Side Subsystem Decomposition

7

The cloud side uses a three tier architecture.

Data layer consists of objects that are passed around the logic and presentation layers,
along with a helper class that provides Google Drive utilities. However, data objects themselves
contain a lot of utility methods that could be placed in another class in the logic layer. This was
not done to keep the code simpler. Data layer also has external dependencies not shown here
for input/output and some image processing utilities.

Logic layer consists of objects that provide the necessary functionality to DeepGame.

The three classes contain methods to transform and process input media. MaskOperations is
mostly self-contained. However, the other classes require importing machine learning models
and libraries from external sources such as GitHub and TensorFlow Hub.

Presentation layer is a Jupyter notebook to be hosted on Google Colab. Google Colab
provides a virtual machine that hosts a Jupyter notebook. This notebook is used to keep the
explanation and scripts that execute various tasks. Because the Colab instance is reset at each
new login, a data loader script is used to automatically set up the dependencies inside the
instance.

8

3.1.2 Data Layer

Figure 5. Data Layer Class Diagram

9

Data layer consists of three classes. Two for actual storage of data and one for cloud storage
utility. We will begin with the utility class then move on to the data classes.

DriveOperations is a simple utility wrapper for providing access to Google Drive from
Google Colab instances. Machine learning parts of the project requires the usage of models
large in file size, thus they do not fit in a GitHub repository. So, we use Google Drive as a cloud
storage provider and publicly share the models from a shared folder. DriveOperations enables
us to easily import the models from Drive to the Colab instance.

The Python ecosystem for machine learning and image processing mostly revolves

around Numpy data structures. DGImage is a wrapper around the Numpy array that represents
images. Each image processing library has their own format requirements for the inputs.
DGImage, enforces a format on the images it encapsulates but provides access methods to
convert the image to any format needed. This results in a unified image object to be used
across the DeepGame cloud side. Enforced format comes with immutability. These result in a
more robust system at the cost of some performance. Besides holding the image data,
DGImage provides many methods for utility or small image processing tasks. Richness of
methods in the data layer enables the logic layer to be simpler and more direct.

As videos are made up of individual images in the form of frames, the same philosophy

is applied for DGVideo. DGVideo is made up of DGImage objects representing the frames of the
video. This architecture enables DGVideo to take advantage of DGImage’s features and apply
an operation to the entire video to transform the video one frame at a time.

10

3.1.3 Logic Layer

Figure 6. Logic Layer Class Diagram

Logic layer consists of three classes. MaskOperations is for generation and building of masks to
cover the background of an image. StyleTransferer and ImageAnimater classes use machine
learning libraries to style an image and create a deepfake video respectively.

The MaskOperations class takes a DGImage and manipulates a boolean matrix that
denotes whether a particular pixel should be covered by the mask. The generate method
produces candidate masks and union, intersection, difference methods manipulate those
candidates to build other masks. Finally, the apply method applies a mask with the given color
on the given image to create a new image.

The StyleTransferer class uses a machine learning library to apply the style transfer
technique to the given images. Its main purpose is to lose the photorealistic quality of the input
images.

The ImageAnimater class uses a machine learning library to create the deepfake of the
person in the given image driven by the given video. Its main purpose is to put a single image in
any pose needed.

The logic layer is discussed in detail later in the next section.

11

3.1.3 Presentation Layer
The cloud side presentation layer can not have a traditional class diagram. Because, we use a
Jupyter notebook as the interface. Below is a discussion of Jupyter notebooks as an interface.

Figure 7. Example Jupyter Notebook Annotated Cell

Jupyter notebooks are made up of cells that contain and run scripts. These scripts can be
annotated to turn the cell into an interactive form. Above is one such cell.

Figure 8. Jupyter Notebook Cell Viewed as a Form

The same cell looks like the figure above, when viewed as a form. The changes to the form are
input to the variables inside the script. Hence, Jupyter notebooks can be used as a fully featured
user interface for the presentation layer. But do not have a class diagram.

12

3.2 Game Side
In this section the details of the blueprint classes of the game is provided.

Figure 9. Blueprint class of the randomness manager

Randomness manager controls the animation of the gamblers. In order to make the game
scene look as realistic as possible every gambler in the table does different animations and
changes their animation in every 10 seconds. The duration of the animation can be changed,
and set to different values. New animations can be added easily.

13

Figure 10. Blueprint class of the main menu

In this blueprint class the exit action is implemented. When the user presses on the exit button
the game quits.

Figure 11. Blueprint class of the main game part I

14

Figure 12. Blueprint class of the main game part II

Figure 13. Blueprint class of the main game part III

15

 ​Figure 14. Blueprint class of the gamblers part I

In this class of the game user can upload photos: left side,right side and front. User can choose
the gender and the part where face replacement logic takes place stated explicitly.

16

 ​Figure 15. Blueprint class of the gamblers part II

In this part the gamblers which are opponents and players are chosen.

17

4 Development/Implementation Details
As already mentioned, there is a clear separation in project components. In this section, we will
discuss the two sides separately.

4.1 Cloud Side
This section will start with a discussion of an integral part of the project, Google Colab. Then,
inner workings of the cloud side will be explained one subsystem at a time.

4.1.1 Google Colab
Google Colab is a service provided by Google for free for anyone to access [1]. Briefly, it is a
Jupyter notebook running on a remote instance with freely provided GPUs or TPUs. Since
Colab takes Jupyter notebooks as its foundation, it is very well integrated with the Python
ecosystem along with git and GitHub. Moreover, being a Google product, it provides easy
access to Google Drive instances of users. This access to Drive allows it to be used as cloud
storage for users. This helps offload privacy security concerns to Google, as long-term storage
of private data is a privacy and security concern. Since any cloud solution requires trusting a
third party, this was deemed acceptable. Moreover, usage of Drive as cloud storage is not
mandatory. Users can use their personal computers or other cloud storage providers with minor
modifications to the source code without affecting the overall product.

On the other side, there is Colab’s integration with the Python ecosystem. Since
machine learning research basically runs on the Python ecosystem, this integration enables us
to run any machine learning task we may need on Colab. Moreover, being built on Jupyter,
Colab provides an interactive and intuitive interface to its users.

We selected Google Colab because it delivers powerful features for free. However, after
getting invested into Colab, we discovered a downside to it. In order to keep Colab a free
service, access to more powerful features of Colab such as GPU usage gets limited based on
recent usage on user’s end and load on Colab’s end. The problem is that there is no logic to
why, when and for how long this access gets limited. Colab supposedly offers continuous GPU
access 12 hours at a time and users accessing the GPU at short bursts should face usage limits
less often. However, that offer did not match the reality and we faced days of unproductivity
where we could not use Colab for our needs. This problem was somewhat remedied by using
alternate accounts, because the same Drive instance can be accessed from different accounts.
But, that did not turn out to be a sufficient solution when both accounts hit the usage limit
concurrently.

Another challenge with Colab was that Colab instances are not persistent. Meaning,
data within Colab instances get deleted with each restart of the instance. We solved this
problem by using GitHub repositories for code storage and Google Drive for data storage as a
means of persistent data management and software deployment. One exception to the lack of

18

persistency is the Jupyter notebooks themselves. They, and thus any code written in them, is
persistent. Hence, we wrote an initializer script that pulled all the necessary data after
authentication with Google for Drive access.

Rest of the Colab notebook features code meant to take the user through steps of data
processing along with explanatory text. Only interaction required is selecting input files, running
scripts and going through the semi-supervised process of mask creation through image
segmentation. The user can see results of the intermediate steps during this process. However,
due to lack of a reliable unsupervised mask generator, the process cannot be streamlined down
to selecting the inputs only.

4.1.2 Style Transfer
Style transfer is a somewhat recent innovation. Our implementation takes the work of Ghiasi et
al. in 2017 as the foundation [2]. The earlier work of Gatys et al. has the advantage of the option
of keeping the color palette unchanged during the style transformation [3]. But, Gatys’ work runs
on the Lua version of Torch, which is not integrated into Colab and effectively impossible to
implement. That is because installation takes a lot of time and because of the non persistent
nature of Colab, has to be repeated with each new use. There is also a PyTorch implementation
of Gatys’ work which sould work in theory. However, the code uses a deprecated version of
Python and its supporting libraries. So, it was not usable. On the other hand Ghiasi’s work is
readily available on TensorFlow Hub, supports styles without restriction and works much faster
than Gatys’ method. The only problem is the changing color palette after the transformation.
Which requires selecting your style image carefully. We deemed the sacrifice in fidelity and work
put into appropriate style image selection worth the gain in speed and ease of use.

Below is a table showing examples of the style transfer applications with different inputs.
The first row features unstyled photographs. The first column features computer generated or
drawn portraits of video game characters. The intended effect is to change the style from
photorealistic to one matching the game art. Results show that the effect is partially achieved.
Rough features of photographs are replaced with smooth surfaces of computer generated
imagery. However, the colors also get mixed up during the process. Also, the bottom right
example places what looks to be half an eye in the forehead of the result. Because the
background will be filtered out, glitches in the background are acceptable. Same does not hold
true for glitches on the face. Color invariant transformation approach of Gatys’ style transfer
would work better. However, we were not able to implement it on Colab. Hence, we will settle for
supervising the results and selection of the style image instead.

19

Figure 16. Table of Style Transfer Applications

In order to effectively use Ghiasi’s work, we wrote a manager subsystem that deals with
the initialization of the TensorFlow Hub model and input/output of the images. This subsystem
was implemented in the form of a Python class.

4.1.3 Image Animation
First Order Motion Model for Image Animation is a research on deepfake creation using a single
target image and a driver video that was published in late 2019. It is a quite recent development.

20

This research, Image Animation in short, is the basis of the idea and the technology driving the
DeepGame.

Image Animation allows replicating mimics and poses, taken from a driver video, in the
input image. In other words, it animates the image of a person to match the motions of another
person given with the driver video. This enables DeepGame to require only one or a few images
of a person to animate them as needed.

The image animation subsystem is a manager class written to handle the input/output
and preprocessing of data that is to be used with the Image Animation research. A powerful
feature of Image Animation is that it works without problems when supplied with an image with
the background masked. This feature is used to animate images with a background mask
applied. The resulting video keeps the background mask and distorts it around the person as
the motion requires. Later, this mask is used to filter out the background and apply the deepfake
product to the game itself.

Because video cannot be displayed on paper, there is no example for this process.

4.1.4 Mask Generation
Mask Generation is the process of finding a mask for the image of a person that covers the
image background and only leaves the person’s face if possible and person’s self if not. Our
implementation does not depend on previous research. But, this topic is not a new idea.
Therefore, there are various techniques that can be applied to solve this problem [4,5]. After our
research, we settled on image segmentation with a watershed transformation seeded from
pixels manually selected or automatically selected via choosing the darkest and brightest spots
in the image.

The automatic approach works great when the background is clearly distinct from the
person. But, downgrades to producing multiple mask pieces over the entire image. To improve
upon this, we implemented a mask manipulating system. Where masks can be joined or
removed from each other. This introduces human labor into the system but having the possibility
of a better result with extra work is better than not having the option at all.

The manual approach works by selecting pixels that must be covered by the mask and
pixels that should not be covered by the mask. Then, a different mask for each case is
generated and the mask for the uncovered case is subtracted from the mask for the covered
case. The result is a mask that fits the described requirements. The manual mask generation
can be used in conjunction with the automatic generation via the mask manipulation system to
improve upon the result.

Below is an example featuring automatic mask generation. We can see that certain
elements of the image are identified and segmented well. Meanwhile, the approach fails to
identify the clothing of the person as one segment. Also, some segments have holes in them.

21

Figure 17. Automatically Generated Masks

From the pieces we see that if we join the masks of indices 1 and 5, we cover the face. Then,
we can flip the intermediate result to get a mask that leaves the face open and covers most of
the irrelevant parts. The result of that can be seen below:

Figure 18. Resulting Mask Constructed as Described

Mask generation tends to work better on unstyled images, because style transfer tends to lose
valuable image information. Once a mask is constructed on an unstyled image, that mask can
be used on the styled result. One important point is that style transfer enforces an image size on
the output. A mask fits the size of the image it is constructed on. Care must be taken to ensure
the mask constructed on an unstyled image fits the styled result.

22

4.2 Game Side
For the game implementation part, all commercial engines available in the internet have been
assessed for the depiction of the algorithm and gamification in terms of usability, community
support, transparency of the source code, as well as the performance and visual quality. Since
the game logic is usually being run every tick, meaning that 30+ times every second, choice of
the programming language and the engine architecture is extremely important for having a
decent gameplay experience.

In our implementation for the game we have used Unreal Engine. What made Unreal
Engine a better implementation candidate among other engines such as Unity are as follows:
open source, great community support, support for most up to date rendering techniques, C++
programming language also Blueprint visual programming for basic logic, visual shader
programming.

Comparison of the other candidates and their noteworthy properties are below:

1. Unity
a. C# programming language
b. VM based JIT process environment
c. Good community support
d. Closed source
e. Easiest learning-curve
f. Support for most up-to-date rendering techniques

2. CryEngine
a. C++ programming language
b. Bad community support
c. Closed source
d. Support for most up-to-date rendering techniques

3. Unreal Engine
a. C++ programming language, also Blueprint visual programming language for

basic logic
b. Visual shader programming (blueprint-like)
c. Great community support
d. Open source
e. Easy-medium learning-curve
f. Support for most up-to-date rendering techniques

4. Torque 3D
a. C++ programming language
b. Terrible community support
c. Open source
d. Difficult learning curve
e. DirectX 9 support, very outdated

5. JavaScript-WebGL based engines (Three.js, Babylon, Play Canvas)
a. JS programming language

23

b. Decent community support
c. Medium learning curve
d. Worst runtime performance, since JS is an interpretation-based language

Based on the assessment which has been made, Unreal Engine 4 has been chosen as
the development environment. The choice is very important as it affects implementation of the
game logic, interaction of the face swapping algorithm via the output as texture stream with the
character’s 3D model’s face-texture mapping. Therefore, Unreal Engine’s strong community
support, the engine being open source, support for latest rendering techniques and appealing
development environment with Blueprints and visual shader editor, C++ based development
have been made Unreal Engine to be the best choice for the project development.

Unreal engine starts working when Deepgame.uproject file is opened. Version 4.25 is

used in the implementation. Any version greater than 4.25 is compatible and works without a
problem. In the application there is a map named Main. The main is an abstraction in which how
the scene is created, logics, actors, furniture is made. The characters sitting around the poker
table are actors. Actors have gender specification as female and male. The randomization
manager has an animationIndex which allows us to animate four characters differently. With the
getGameMode function actor's game mod is obtained.

The camera in the game is static and the player can use their mouse cursor to stick

around the room. The interface is developed with Slate UI Framework provided by the Unreal
Engine.

C++ is used in file picking to map the plane. In order to use face transition faces of the

actors should be replaced with users input photos/videos. In the file picker with C++ we are
converting the file into a byte array structure. From byte array structure the file is converted to
texture. Remaining parts of the game is done in Blueprint.

The game is done with object oriented concepts. The Blueprints Visual Scripting System

provided by the Unreal Engine is used to define Object Oriented classes or objects in the
engine. The gameplay scripting is done by node-based interface in Blueprint.

For the face replacement implementation main approaches are specified below with their

complexities.

1. Hide the head; put a cube and stream the face data to the cube with planar mapping
(easier/less time-consuming method, complexity 1)

2. Or as a more advanced and realistic approach; planarize the face in the video; map the
planarized face texture to the 3D model texture. (complexity 10)

24

Figure 19. Opening Screen of the game with exit and start options

Figure 20. File uploading screen for the character face transition for female player

25

Figure 21. File uploading screen for the character face transition for male player

Figure 22. Uploading selected files

26

Figure 23. Uploaded raw file is attached to the chosen characters face

Figure 24. Showing the table from other perspectives

27

Figure 25. Details of the game: Sofa

Figure 26. Details of the Game: TV Unit and Chair

28

Figure 27. Details of the Game: wall decorations, wallpaper and hardwood floor

Figure 28. Details of the Game: chairs, console and painting on the wall

29

Figure 29. Game from a different perspective, obtained by moving the mouse and cursor

30

5 Testing Details
Due to the nature of the machine learning field, it is hard to test a project that takes machine
learning as its foundation. This is even more pronounced for DeepGame. Because, unlike most
other forms of machine learning tasks, measuring the quality of deepfakes is near impossible to
achieve automatically. It requires a human eye to judge the results. Therefore, we were not able
to implement comprehensive testing for a majority of the DeepGame project. However, for the
cloud side we used our friends as sort of beta testers.

Besides the machine learning systems, DeepGame also includes support systems that
help, manage and drive the application logic. They were tested in a small number of cases to
ensure they work when used correctly. Because the DeepGame project is more about the
development of a technique rather than the creation of a software product, that was the extent
of our testing.

Testing for the game is done in different operating systems. The game can be played in
Mac, Windows, Linux and other environments without a problem.

31

6 Maintenance Plan and Details
The DeepGame project as the proof of concept of a technique is not fit for long term

maintenance. However, there are multiple ways of maintaining and improving the technique
itself. The DeepGame technique hinges on the application of style transfer, image animation
with deepfakes and image segmentation.

Style transfer is required for matching the art style of a given game. Our current
implementation uses an all purpose style transfer model. The model itself can be improved.
Moreover, the current implementation transfers the color palette of the style image to the target
image. There are not as accessible style transfer methods that keep the color palette of the
target image. Such a method would improve the possibilities of DeepGame and improve the
visual fidelity of the result. It would also simplify the process. Because, the current
implementation requires finding a style image that will not corrupt the colors of the content
image. Which diminishes usability.

The current image animation method works well. However, the machine learning model
utilized is trained on celebrity interviews. Although this covers most of the required use cases in
DeepGame, it still leaves out some edge cases. A new model trained on a larger data set would
definitely improve the quality and capabilities of DeepGame.

As a reminder, image segmentation is the process of separating the background of a
portrait picture from the person’s face. The current implementation has a helper system but
ultimately requires supervision from the user. We do not know of any method that can reliably
and correctly segment images without enforcing strict photograph composition guidelines.
However, mild guidelines together with machine learning may produce a more powerful image
segmentation system that reduces work on the user's end.

In conclusion, foundational methods used in DeepGame are products of a rapidly
improving field. As long term maintenance, subsystems of DeepGame can be replaced with
improved ones.

32

7 Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

7.1.1 Entertainment
In the project we have revealed, we have created a result that can take a leading role in the
game industry with the technique of transferring face to the game character. Thanks to this
technique, people will now be able to create and direct their own original game characters. The
gestures, sounds and movements of the characters created with machine learning will also be
unique. This technique, which is not common in the game industry, will begin to be used in other
games and more realism will be captured in the game world.

7.1.2 Socialization
Our game has both a single player mode and a multi-game mode. Due to the multi-game mode
feature, people will compete with their friends and will spend more time on the game. They will
compete with each other over the virtual environment by putting the game characters in their
place. In addition, they will meet more people and make many friends, and this will create a
more social environment, especially among young people.

7.1.3 Privacy
DeepGame deals with data of people’s likeness and processing of the said data. Therefore,
privacy is an important aspect of the project. The current architecture of the project does not
keep any private data. In fact, any external data is supposed to be maintained by the user
themselves. This eliminates most of the concern for data privacy. For total privacy, only concern
is the use of Google services for computing. Google services are supposed to be safe for this
purpose. However the project’s architecture is such that if one desires to avoid Google, they can
host the project where they see fit with slight effort.

7.1.4 Ownership of One’s Likeness
DeepGame processes people’s photographs to use them in games. This raises the question of
people using other people’s images without their consent. Since people’s access to publicly
available photographs cannot be blocked, this is a concern that cannot be eliminated. On the
other hand, people can use other people’s images without their consent for their own purposes
with or without DeepGame. Therefore, DeepGame does not create a new problem.

7.2 Ethics and Professional Responsibilities
This project uses personal data, user information and pictures. These data could be considered
as sensitive, thus as an ethical principle our game does not violate personal privacy. We will not
sell personal data to third parties or organizations.

33

For this purpose, we developed the project with total control of data by the user and the

usage of Google services in mind. Since Google can be considered a trustworthy service, this
should be sufficient for privacy and security of personal data. However, if the user does not trust
Google, the project can be modified to use any storage provider with minor effort or the Colab
notebook can be hosted on a private machine with slightly more effort.

7.3 Judgements and Impacts to Various Contexts

34

 Impact Level (out of 10) Impact Description

Public Health N/A N/A

Public Safety N/A N/A

Public Welfare N/A N/A

Global Factors 7 The DeepGame is a globally
pioneering project in the game
industry. Due to the ability to transfer
the faces of the players to the game
characters, if necessary investments
are made, it can make global changes
in the gaming industry.

Cultural Factors 2 The DeepGame will not have direct
cultural implications. Due to the
multiplayer feature of the game, it will
allow players from different cultures to
play together. Therefore, it has the
potential to create a cultural cohesion
environment.

Social Factors 8 Because of the deepfake, which is a
different technology, people will be
more socially active through the game
as they will play by seeing themselves
in the game characters. Since the
game characters will have real human
faces, there will be no anonymous or
fake characters. Thus, people will
meet more quickly through the game.

Economic Factors 6 An important part of game
development is character creation
and customization. DeepGame can
help reduce costs by offering cheaper
and faster ways of developing

7.4 Teamwork Details

7.4.1 Contributing and Functioning Effectively on the Team
We deemed it appropriate to divide this section into group members to fill individually.

Betül Reyhan Uyanık

● Contributions to the reports throughout the project.
● Contributions to the screen shots, and diagrams in reports
● Researching the Game Engines available and deciding on the appropriate one for our

project.
● Researching deepfake algorithms
● Sole developer of design of the Game
● Sole developer of the animations
● Sole developer of the Game part of the project
● Sole developer of the image uploading part of the game

Mert Alp Taytak
● Idea and design of the project,
● Research into various machine learning methods,
● Research into infrastructure,
● Sole developer of the cloud side of the project,
● Majority contributions to all reports throughout the project.

Ömer Faruk Geredeli
● Contributions to the reports
● Contributions to the charts and diagrams in previous reports
● Research into deepfake algorithms and contributions to the design of project
● Contributions to the designing the game

7.4.2 Helping Creating a Collaborative and Inclusive Environment
Since we were a small group, we all knew from the beginning of the project that we had to move
forward with more help. Therefore, each group member had more responsibility. Since what we
need to do and our duties could not be separated sharply, cooperation was at a high level. Each
group member progressed with high motivation. We worked on the project in parallel with the
joint workspaces we established. We implemented the project in constant communication with
each other in online workspaces such as Google Colab and Google Drive.

35

character related parts of a game.

7.4.3 Taking Lead Role and Sharing Leadership on the Team
We deemed it appropriate to divide this section into group members to fill individually.

Betül Reyhan Uyanık
I believe a leader is the most important part of the project team. With a motivating, sympathetic
and a smart leader any team would be able to finish their product on time. In my other projects,
during my internship and in my part time job as a software engineer I have been praised by my
peers as an active, motivated and hardworking team member. Thus​, s​ince the beginning of the
project I tried to be an active, motivated team member as possible. I have been able to fully
complete the work that our supervisor has assigned to me.

Mert Alp Taytak
Since the very beginning of the project I tried to take an active role. I researched methods of
achieving our goals. I thought and tried various methods of architecture and implementation of
the software. I tried my best to lead, guide and direct my partners in the project. I shared
tutorials, research papers and videos relevant to the project to prepare them.

7.4.4 Meeting Objectives
Due to the pandemic that has occurred since the beginning of our project, we had to hold our
meetings online. We held weekly meetings over the Zoom application. In these meetings, we
first brainstormed on how the project should be mentally. Since the owner of the project idea
was Mert, one of our group members, we contributed as other group members on his ideas. We
talked about the tasks shared to everyone at each meeting and how far we have come
afterwards. During the summer period, we did researches for the coding parts of the project we
will do, and continued our weekly meetings. Simultaneously, we tried to produce concrete
results. As we are working in a new field, we faced many difficulties and we discussed how to
debug these errors in our project meetings. In general, we paid attention to result-oriented
action in our project.

7.5 New Knowledge Acquired and Applied
We deemed it appropriate to divide this section into group members to fill individually.

Betül Reyhan Uyanık

I have learned deepfake algorithms, read articles and learned the technology. I had no previous
experience of developing a 3D game engine nor deepfake technologies/concepts. So the
concepts were new to me. In the game part of the project I have learned how to create 2d and
3d games in unity from scratch. I have learned techniques, researched example repositories
and watched online tutorials. After careful consideration I have decided to move forward with
Unreal Engine for our game. I previously had small, dummy project experiences with unreal but
the scale and complexity of our game was at another level. I developed the game part of our

36

project including the animations, characters, room decoration, character creation page, photo
upload page, and replacing the character's face with raw photos.

The only thing left here is just replacing this logic with the existing deepfake library that we have
been working on.

Creating a game engine from scratch was very challenging but also educating. In addition to
learning a new technology, I have developed better engineering and debugging skills. This
project helped me decide on my career path. Although my specific focus was developing the
game engine, I learned valuable information about deepfake algorithms, image processing,
techniques such as texture wrapping. On the other hand since this project was done during the
Covid-19 pandemic, I have learned that soft skills, team members in a project group, distribution
of the work, communication, and understanding is equally important as engineering skills.

Mert Alp Taytak

The biggest effect of this project on my personal skills and knowledge was being introduced to
another aspect of the Python ecosystem in machine learning applications, libraries and tools. I
had previous experience with machine learning and image processing in a more theoretical
level, only utilizing MATLAB if there ever was a practical part. That experience diminished my
interest in the field. But, reexamining the field under the Python ecosystem was a nice
experience. I also learned about Google Colab in this project. Which makes machine learning
and image processing projects very accessible to the average person.

Other than tooling and software, I also learned new techniques. Mainly style transfer and
image animation with deepfakes. My needs did not require me to learn the theory behind style
transfer, but I studied image animation to get a better understanding of its capabilities. I learned
that the idea is to train a model that detects the keypoints in an image and apply affine
transformations to those polygons defined by the keypoints to match them to the arrangement of
keypoints of frames in a driver video.

I applied all of this cumulative knowledge to come up with the idea of a technique that
would achieve DeepGame, and developed the cloud side of the project.

Ömer Faruk Geredeli

When I started the project I had some ideas about what the deepfake is and how it looks. The
fact that the subject was interesting and untested was also one of the reasons that affected my
participation in the project. I did detailed research on deepfake algorithms and realized that this
new technology area has no limits. We developed the algorithms we use with machine learning
with artificial intelligence. Since we will build our project on a game, I researched the popular
game engines Unity and Unreal Engine, and learned how to use them. I learned to create
games in 2 dimensional and 3 dimensional universe. In addition to these, I created joint

37

workspaces in Google Colab and Unity Colab to see Deepfake algorithms that require high
performance without using the hardware features of the computer.

38

8 Conclusion and Future Work
From a growth perspective, this has been a very enlightening project. We learned about new
tools and methods. We learned about what goes into collaborative work. We learned about do’s
and don'ts of project planning, software engineering and team work.

From an achievements perspective, this project has been a partial success. We were not
able to meet our goals of creating a complete game engine plugin that can be integrated into
any game to offer the DeepGame experience. Due to our circumstances, we had to settle for a
proof of concept instead.

For future work, there are many possibilities. The most obvious one is to take the project

to its initial goal and complete the DeepGame as an engine plugin. The other one is to take the
cloud side off Google Colab and turn it into something deployable to any instance with machine
learning infrastructure.

For the future, there is also the idea of improving the machine learning models as

discussed earlier in the maintenance section. Machine learning is a fast moving field and new
research is coming out every year that overperforms earlier research. In our project, we used
very recent research. But, the future will most likely bring better projects. Therefore, machine
learning parts of the DeepGame can be replaced by better models and research as they come
out.

39

9 Glossary
Deepfake: Common name for the process of constructing videos with image of a person
transferred onto a person in the video, without the transferred person being a part of the original
video.

Image Animation: Image animation is the process of animating a single image using motion
information from a driver video. Motion of the keypoints of the video frames are applied to the
keypoints of the input image. Resulting in a video from the input image, changing like the driver
video.

Mask: A boolean matrix that decides whether a particular pixel of an image should be selected
or not.

Mask Construction: Process of applying set operations to masks to create a new mask from
mask pieces.

Mask Generation:​ Process of generating masks on a given image.

Style Transfer: Style transfer is the process of taking two images, one for style one for content.
Then, extracting style and texture from the style image; extracting object and shape information
from the content image, extracted information is merged to produce a new image. This new
image looks like the content image painted with the art style of the style image.

Content Image: Image that receives the style transfer. Also used for the image of the target
person, because that image is used as the content image.

Style Image:​ Image that supplies the style for the style transfer.

40

APPENDIX A - User Manual
Cloud Side Manual

The prerequisites to running the cloud side is to have a computer with internet access and a
Google account.

The first step is to ensure familiarity with Google Colab usage. Google provides an introductory
material for this purpose. Which can be found in the link below:

https://colab.research.google.com/notebooks/intro.ipynb

The second step is to open the DeepGame notebook in Colab. Go to the GitHub repository of
DeepGame, located in the link below:

https://github.com/mertalpt/Deepgame

The third step is to locate the notebook file with the ‘.ipynb’ extension located in the top level
files of the repository. The file name should be ‘DeepGame.ipynb’ . Direct link is given below:

https://github.com/mertalpt/Deepgame/blob/master/DeepGame.ipynb

The fourth step is to open this notebook in Colab. There is a button at the beginning of the
notebook file that will automatically do that for you. Left click the button or right click and ‘Open
in a New Tab’. It should open the notebook in Colab.

Afterwards, we are ready to run the notebook. Connect to the Colab instance. Because the
notebook requires GPU usage, Colab may block you due to usage limits. This happens if you
have used Colab with GPU a lot recently. The solution is to use another Google account or wait
a couple days. If you have connected successfully, follow the steps below. Note that there are
instructive and explanatory texts in the notebook to help you along the way.

1. Run the cell ‘Install and Setup Dependencies’. It will ask you to authenticate your
Google account by providing a link and asking for an input. Go to the link and
select a Google account. It will ask for access permissions, click ‘Allow’. It will
produce a code, click the button to the right to copy the code. Return to Colab,
click the input field and use ‘Ctrl+V’ or paste shortcut of your system to paste the
code. Hit the ‘Enter’ key. If authentication is successful, it will download files from
a publicly shared Drive folder to the Colab instance. The notebook does not
access your files.

2. Run the cell ‘Initialize Workspace’. It will download some files and initialize
certain systems. This process may take a few minutes.

3. Follow the instructions under the ‘Loading Images’ section to load a content
image and a style image. These images can be selected from the example data
that comes with DeepGame or from files manually uploaded to Colab or from the

41

https://colab.research.google.com/notebooks/intro.ipynb
https://github.com/mertalpt/Deepgame
https://github.com/mertalpt/Deepgame/blob/master/DeepGame.ipynb

internet by providing a direct URL to the image file. Any custom image comes
with the option to crop the image around the face. You can play with the
parameters to produce a satisfying result. Cells need to be rerun after each
change to see the result. Face detection may not always work and throw an
error. Try with different images or parameters if that happens. Also, the last
loaded image is saved for each content image and style image.

4. Follow the instructions under the ‘Loading the Video’ section to load an example
video or a custom video from manually uploaded files. Instruction from the
‘Loading Images’ section also applies here.

5. Run the cells under the ‘Display Your Inputs’ section to verify that your selections
are what you desired. There should be two images and a video. If there is any
error or what is displayed is not what you desired, go back to steps 3 and 4.

6. Run the cell under the ‘Style Transfer’ section to apply style transfer to your
images. Style transfer may produce undesirable results due to color palette
changes. Glitches in the image background will later be masked out. If there is a
glitch on the face itself or the result is undesired in general, go back to step 3 and
try again with different images.

7. Run the first cell under the ‘Construct a Mask for the Image’ section. It will
produce mask pieces that cover segments of the content image. You can play
with the parameters to alter what pieces are generated. Threshold parameters
affect how bright a pixel constitutes as the start of a different segment. Sigma
affects edge sharpness. The size filter filters out mask pieces that fall below a
certain pixel count. It is recommended to set it to at least 100, because hundreds
of small mask pieces can be generated.

8. This step requires programming intervention. Look at the mask pieces generated
at the previous step and using instructions written above the cell, construct a
mask.

9. Run the cell named ‘Apply the Mask’ to apply the mask to the style image and
display the result. The mask color is pure green by default, but it can be changed
by changing the script underlying the cell to input the desired color to the relevant
function.

10. Next, run the cells under the ‘Image Animation’ section consecutively. The first
two cells create a deep fake video, the last two cells filter out the mask to make it
transparent. Mask filter is not perfect, but can be improved by changing the script
to alter the color range.

11. Finally, run the cell named ‘Save the Result’. Here, there are two options. The
first is to save the video as a single ‘mp4’ file to the given path. The second is to
save the video as a series of images. This option will take a path to a directory
and fill it with images for each frame.

At the end you have a video inside the Colab instance. You can download the result
manually using Colab’s own interface. If you choose to save the result as a series of
images, there is an example cell that can be altered to zip the directory. Then, the zip file
can be manually downloaded.

42

Game Side Manual

Unreal supports Mac, Windows, IOS, Android, even playstation. When packaged on a Mac, the
game can be executed on a Mac with the executable file. When packaged in Windows the game
can be played in Windows machines with the exe file. Cross compiling among Windows and
Mac does not work properly. Cross compiling among Windows and Linux, or Windows and
playstation works without a problem. Opening the executable is enough to play the game.

Game is implemented mainly for the purpose of showing the character creation using the
deepfake algorithms.

43

10 References
[1] “Colaboratory FAQ,” ​Colaboratory - Google​. [Online]. Available:

https://research.google.com/colaboratory/faq.html. [Accessed: 15-Dec-2020].

[2] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring the structure of a

real-time, arbitrary neural artistic stylization network,” ​arXiv.org​, 24-Aug-2017. [Online].
Available: https://arxiv.org/abs/1705.06830. [Accessed: 15-Dec-2020].

[3] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer Using Convolutional Neural

Networks,” ​Page Redirection​, 2016. [Online]. Available:
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Gatys_Image_Style_Tra
nsfer_CVPR_2016_paper.html. [Accessed: 15-Dec-2020].

[4] “How do I remove the background from this kind of image?,” ​Stack Overflow​, 28-Mar-2015.

[Online]. Available:
https://stackoverflow.com/questions/29313667/how-do-i-remove-the-background-from-this-ki
nd-of-image. [Accessed: 15-Dec-2020].

[5] F. L. Bourdais, “Removing the Background from an Image using scikit-image,” ​Removing the

Background from an Image using scikit-image | Frolian's blog​, 01-Sep-2016. [Online].
Available: https://flothesof.github.io/removing-background-scikit-image.html. [Accessed:
15-Dec-2020].

44

